We present a collection of sampling-based algorithms for approximating the temporal betweenness centrality of all nodes in a temporal graph. Our methods can compute probabilistically guaranteed high-quality temporal betweenness estimates (of nodes and temporal edges) under all the feasible temporal path optimalities presented in the work of Bu{\ss} et al. (KDD, 2020). We provide a sample-complexity analysis of these methods and we speed up the temporal betweenness computation using progressive sampling techniques. Finally, we conduct an extensive experimental evaluation on real-world networks and we compare their performances in approximating the betweenness scores and rankings.
翻译:我们提出了一组基于抽样的算法,用于近似计算时间图中所有节点的未来性介数中心性。我们的方法可以在Bu{\ss}等人(KDD, 2020)的所有可行时间路径最优性下,计算概率上保证的高质量未来性介数估计值(节点和时间边)。我们对这些方法进行了样本复杂度分析,并使用渐进抽样技术加速了未来性介数的计算。最后,我们在真实网络上进行了大量的实验评估,比较了它们在近似介数分数和排名方面的表现。