In this work the $H^1$-stability of an L2 method on general nonuniform meshes is established for the subdiffusion equation. Under some mild constraints on the time step ratio $\rho_k$, for example $0.4573328\leq \rho_k\leq 3.5615528$ for all $k\geq 2$, a crucial bilinear form associated with the L2 fractional-derivative operator is proved to be positive semidefinite. As a consequence, the $H^1$-stability of L2 schemes can be derived for the subdiffusion equation. In the special case of graded mesh, such positive semidefiniteness holds when the grading parameter $1<r\leq 3.2016538$ and therefore the $H^1$-stability of L2 schemes holds. To the best of our knowledge, this is the first work on the $H^1$-stability of L2 method on general nonuniform meshes for subdiffusion equation.
翻译:在这项工作中,为子扩散方程式确定了用于一般非统一模层的L2方法的1美元,该方法对于一般非统一模层的L2方法的稳定性。在对时间档比值$rho_k$的某种轻微限制下,例如,0.4573328\leq\rho_k\leq 3.5615528美元,对于所有k\geq 2美元来说,这是与L2微分衍生操作员相关的一种关键的双线形式,被证明是积极的半无限期的。因此,对于子扩散方程式,可以得出L2方案的1美元稳定性。在分级网块的特殊情况下,当等级参数为1<r\leq 3.2016538美元,因此L2方案具有1美元稳定性时,这种正的半成型值保持。据我们所知,这是L2方法在一般非统一模层的亚化方程式上的第一个工作。