A recent paper by Davies et al (2021) describes how deep learning (DL) technology was used to find plausible hypotheses that have led to two original mathematical results: one in knot theory, one in representation theory. I argue here that the significance and novelty of this application of DL technology to mathematics is significantly overstated in the paper under review and has been wildly overstated in some of the accounts in the popular science press. In the knot theory result, the role of DL was small, and a conventional statistical analysis would probably have sufficed. In the representation theory result, the role of DL is much larger; however, it is not very different in kind from what has been done in experimental mathematics for decades. Moreover, it is not clear whether the distinctive features of DL that make it useful here will apply across a wide range of mathematical problems. Finally, I argue that the DL here "guides human intuition" is unhelpful and misleading; what the DL does primarily does is to mark many possible conjectures as false and a few others as possibly worthy of study. Certainly the representation theory result represents an original and interesting application of DL to mathematical research, but its larger significance is uncertain.


翻译:Davies等人(2021年)最近发表的一篇论文(2021年)描述了如何利用深层次的学习(DL)技术找到可信的假设,这些假设导致了两个最初的数学结果:一个是结结结理论,一个是表述理论。我在此指出,DL技术应用于数学的意义和新颖性在所审查的论文中被大大夸大,并且在大众科学出版社的一些账户中被大肆夸大。在结结结论结果中,DL的作用很小,传统的统计分析可能已经足够。在表述理论结果中,DL的作用大得多;然而,它与数十年来在实验数学方面所做的工作没有多大的差别。此外,使DL技术在数学方面的应用变得有用的DL的显著特点是否适用于广泛的数学问题还不清楚。最后,我认为这里的DL“指导人类直觉”是没有帮助和误导性的;DL的主要作用是将许多可能的推测标记为虚假的,其他几个可能值得研究的。当然,这个表述结果代表DL对数学研究的原始和有意义的应用,但其意义更大。

0
下载
关闭预览

相关内容

数学是关于数量、结构、变化等主题的探索。
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
12+阅读 · 2019年3月14日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2022年2月10日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
49+阅读 · 2021年5月9日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
12+阅读 · 2019年3月14日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
15+阅读 · 2018年6月23日
Top
微信扫码咨询专知VIP会员