This paper presents a data-driven analysis of the structural performance of 4500 community-designed bicycle frames. We introduce FRAMED -- a parametric dataset of bicycle frames based on bicycles designed by bicycle practitioners from across the world. To support our data-driven approach, we also provide a dataset of structural performance values such as weight, displacements under load, and safety factors for all the bicycle frame designs. Our structural simulations are validated against results from physical experiments on real bicycle frames. By exploring a diverse design space of frame design parameters and a set of ten competing design objectives, we present a data-driven approach to analyze the structural performance of bicycle frames. Through our analysis, we highlight overall trends in bicycle frame designs created by community members and study several bicycle frames under different loading conditions. We then undertake a systematic search for optimal performance and feasibility-predictive Machine Learning models, applying a state-of-the-art Automated Machine Learning framework. We demonstrate that the proposed AutoML models outperform commonly used models such as Neural Networks and XGBoost, which we tune using Bayesian hyperparameter optimization. This work aims to simultaneously serve researchers focusing on bicycle design as well as researchers focusing on the development of data-driven design algorithms, such as surrogate models and Deep Generative Models. The dataset and code are provided at http://decode.mit.edu/projects/framed/ .
翻译:本文介绍了对4500个社区设计的自行车框架的结构性能进行的数据驱动分析。我们引入了FRAMED -- -- 一种基于世界各地自行车从业人员设计的自行车的自行车性能的参数数据集。为支持我们的数据驱动方法,我们还为所有自行车框架设计提供了一套结构性能值的数据集,如重量、负荷中的迁移以及安全因素。我们的结构模拟对照实际自行车框架的物理实验结果进行了验证。我们探索了框架设计参数的多样化设计空间和一套10个相互竞争的设计目标,提出了分析自行车框架结构性能的数据驱动方法。我们通过分析,突出社区成员设计的自行车框架设计的总体趋势,并在不同的装货条件下研究若干自行车框架。我们随后系统搜索了最佳性能和可行性预测机器学习模型,并应用了最先进的自动机器学习框架。我们证明,拟议的自动ML模型超越了通常使用的模式,例如Neural网络和XGBoost,我们用Bayesian 超光谱性能校准进行调调。这项工作旨在同时为研究人员提供自行车设计模型和深层次数据模型,作为研究人员的模型,作为深度设计。