Combinatorial Game Theory is a branch of mathematics and theoretical computer science that studies sequential 2-player games with perfect information. Normal play is the convention where a player who cannot move loses. Here, we generalize the classical alternating normal play to infinitely many game families, by means of discrete Richman auctions (Develin et al. 2010, Larsson et al. 2021, Lazarus et al. 1996). We generalize the notion of a perfect play outcome, and find an exact characterization of outcome feasibility. As a main result, we prove existence of a game form for each such outcome class; then we describe their lattice structures. By imposing restrictions to the general families, such as impartial and {\em symmetric termination}, we find surprising analogies with alternating play.
翻译:混合游戏理论是数学和理论计算机科学的一个分支,它以完美的信息来研究连续的2位玩家游戏。正常游戏是一个不能移动的玩家会输掉的常规。在这里,我们通过离散的Richman拍卖(Develin等人,2010年;Larsson等人,2021年;Lazarus等人,1996年),将传统的正常游戏交替到无数游戏家会输掉。我们推广了完美游戏结果的概念,并找到了对结果可行性的精确描述。主要结果就是,我们证明每个这样的结果类别都存在游戏形式;然后我们描述他们的拉蒂斯结构。我们通过对普通家庭实行限制,例如公正和超正对称的终止,我们发现交替游戏的相似之处令人惊讶。