The high computational complexity and energy consumption of artificial intelligence (AI) algorithms hinder their application in augmented reality (AR) systems. However, mobile edge computing (MEC) makes it possible to solve this problem. This paper considers the scene of completing video-based AI inference tasks in the MEC system. We formulate a mixed-integer nonlinear programming problem (MINLP) to reduce inference delays, energy consumption and to improve recognition accuracy. We give a simplified expression of the inference complexity model and accuracy model through derivation and experimentation. The problem is then solved iteratively by using alternating optimization. Specifically, by assuming that the offloading decision is given, the problem is decoupled into two sub-problems, i.e., the resource allocation problem for the devices set that completes the inference tasks locally, and that for the devices set that offloads tasks. For the problem of offloading decision optimization, we propose a Channel-Aware heuristic algorithm. To further reduce the complexity, we propose an alternating direction method of multipliers (ADMM) based distributed algorithm. The ADMM-based algorithm has a low computational complexity that grows linearly with the number of devices. Numerical experiments show the effectiveness of proposed algorithms. The trade-off relationship between delay, energy consumption, and accuracy is also analyzed.


翻译:人工智能(AI)算法的高度计算复杂性和能量消耗妨碍了其在扩大现实系统(AR)中的应用。然而,移动边缘计算(MEC)使解决这一问题成为可能。本文审议了完成MEC系统中基于视频的AI推断任务的场景。我们提出了一个混合整数的非线性编程问题(MINLP),以减少推论延迟、能源消耗和提高识别准确性。我们通过衍生和实验简化了推论复杂性模型和准确性模型的表达方式。然后通过交替优化来迭接解决问题。具体地说,通过假设给出了卸载决定,问题被分解成两个子问题,即:在MEC系统中完成基于视频的AI推算任务的资源配置问题。我们提出了一个混合整数非线性非线性编程问题(MINLP),以减少推算延迟、能源消耗消耗和改进准确性。为了进一步降低复杂性,我们建议采用基于分配算法的乘数的交替方向方法(ADMMM),具体地说,问题被分解成两个子问题。ADMMA的计算法的精确性交易效率也显示了NUMD的计算方法。AVILA的计算方法的精确性。Ax的计算方法与NUILI的精确性计算方法与NULILLALA。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员