Autonomous systems generate a huge amount of multimodal data that are collected and processed on the Edge, in order to enable AI-based services. The collected datasets are pre-processed in order to extract informative attributes, called features, which are used to feed AI algorithms. Due to the limited computational and communication resources of some CPS, like autonomous vehicles, selecting the subset of relevant features from a dataset is of the utmost importance, in order to improve the result achieved by learning methods and to reduce computation and communication costs. Precisely, feature selection is the candidate approach, which assumes that data contain a certain number of redundant or irrelevant attributes that can be eliminated. The quality of our methods is confirmed by the promising results achieved on two different data sets. In this work, we propose, for the first time, a federated feature selection method suitable for being executed in a distributed manner. Precisely, our results show that a fleet of autonomous vehicles finds a consensus on the optimal set of features that they exploit to reduce data transmission up to 99% with negligible information loss.


翻译:自动系统生成大量多式数据,这些数据在边缘收集和处理,以便能够提供AI服务。所收集的数据集是预先处理的,以便提取信息属性,称为功能,用来提供AI算法。由于一些CPS的计算和通信资源有限,像自治车辆一样,从数据集中选择相关特性的子集至关重要,以便改进学习方法取得的成果,降低计算和通信成本。准确地说,特征选择是候选方法,它假定数据含有一定数量的多余或无关的属性,可以消除。两种不同的数据集所取得的有希望的结果证实了我们的方法的质量。在这项工作中,我们首次建议采用适合以分布方式执行的节点特征选择方法。确切地说,我们的结果表明,一个自主车辆车队就最佳特征集达成共识,利用这些特征集来减少99%的数据传输,造成微不足道的信息损失。

1
下载
关闭预览

相关内容

特征选择( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ),或属性选择( Attribute Selection )。是指从已有的M个特征(Feature)中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。对于一个学习算法来说,好的学习样本是训练模型的关键。
专知会员服务
50+阅读 · 2021年6月30日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员