Audio captioning aims to automatically generate a natural language description of an audio clip. Most captioning models follow an encoder-decoder architecture, where the decoder predicts words based on the audio features extracted by the encoder. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are often used as the audio encoder. However, CNNs can be limited in modelling temporal relationships among the time frames in an audio signal, while RNNs can be limited in modelling the long-range dependencies among the time frames. In this paper, we propose an Audio Captioning Transformer (ACT), which is a full Transformer network based on an encoder-decoder architecture and is totally convolution-free. The proposed method has a better ability to model the global information within an audio signal as well as capture temporal relationships between audio events. We evaluate our model on AudioCaps, which is the largest audio captioning dataset publicly available. Our model shows competitive performance compared to other state-of-the-art approaches.
翻译:音频字幕旨在自动生成音频剪辑的自然语言描述。 大多数字幕字幕模型都遵循编码器- 解码器结构, 解码器根据编码器提取的音频特性预言单词。 传动神经网络( CNNs) 和经常性神经网络( RNNs) 经常用作音频编码器。 但是, CNN 可以限制在音频信号中模拟时间框架之间的时间关系, 而 RNNs 也可以限制在时间框架之间的长距离依赖性建模中。 在本文中, 我们提议建立一个音频定位变换器( ACT), 这是一种基于编码器- 解码器结构的全变换器网络, 并且完全无变换。 拟议的方法更有能力在音频信号中建模全球信息, 并捕捉音频事件之间的时间关系。 我们评估我们的音频卡模型, 这是可供公开使用的最大音频字幕数据集。 我们的模型显示与其他状态方法相比具有竞争力。