We give new lower bounds for $M(n,d)$, for various positive integers $n$ and $d$ with $n>d$, where $M(n,d)$ is the largest number of permutations on $n$ symbols with pairwise Hamming distance at least $d$. Large sets of permutations on $n$ symbols with pairwise Hamming distance $d$ is a necessary component of constructing error correcting permutation codes, which have been proposed for power-line communications. Our technique, {\em partition and extension}, is universally applicable to constructing such sets for all $n$ and all $d$, $d<n$. We describe three new techniques, {\em sequential partition and extension}, {\em parallel partition and extension}, and a {\em modified Kronecker product operation}, which extend the applicability of partition and extension in different ways. We describe how partition and extension gives improved lower bounds for M(n,n-1) using mutually orthogonal Latin squares (MOLS). We present efficient algorithms for computing new partitions: an iterative greedy algorithm and an algorithm based on integer linear programming. These algorithms yield partitions of positions (or symbols) used as input to our partition and extension techniques. We report many new lower bounds for for $M(n,d)$ found using these techniques for $n$ up to $600$.
翻译:$( n, d) $ 美元, 各种正数整数美元和美元美元美元, 美元是美元的最大值, 美元是美元符号上的最大调值, 配有双向Hamming 距离至少为美元美元。 美元符号上大套调值, 配有双向Hamming 距离为美元美元, 美元是构建错误校正调整代码的必要组成部分。 我们的技术, Exem 分区和扩展} 普遍适用于为所有美元和所有美元, 美元, 美元是美元的最大调值。 我们描述了三种新技术, $( $) 相继间隔和扩展距离至少为美元。 和 $( em 平行分割和扩展) 和 $( ) 修改 Kronecker 产品操作, 以不同的方式扩大分区和扩展的适用性。 我们描述分区和扩展如何通过相互或不同货币的拉丁方块( MOLS) 来改善M( n) 的 m( ) 校正( MOLS) 。 我们展示了用于计算新分区的更低比例分区的代代代代代代数( ) 的( Ralassalalalalalalalalal) 报告。