We give new lower bounds for $M(n,d)$, for various positive integers $n$ and $d$ with $n>d$, where $M(n,d)$ is the largest number of permutations on $n$ symbols with pairwise Hamming distance at least $d$. Large sets of permutations on $n$ symbols with pairwise Hamming distance $d$ is a necessary component of constructing error correcting permutation codes, which have been proposed for power-line communications. Our technique, {\em partition and extension}, is universally applicable to constructing such sets for all $n$ and all $d$, $d<n$. We describe three new techniques, {\em sequential partition and extension}, {\em parallel partition and extension}, and a {\em modified Kronecker product operation}, which extend the applicability of partition and extension in different ways. We describe how partition and extension gives improved lower bounds for M(n,n-1) using mutually orthogonal Latin squares (MOLS). We present efficient algorithms for computing new partitions: an iterative greedy algorithm and an algorithm based on integer linear programming. These algorithms yield partitions of positions (or symbols) used as input to our partition and extension techniques. We report many new lower bounds for for $M(n,d)$ found using these techniques for $n$ up to $600$.


翻译:$( n, d) $ 美元, 各种正数整数美元和美元美元美元, 美元是美元的最大值, 美元是美元符号上的最大调值, 配有双向Hamming 距离至少为美元美元。 美元符号上大套调值, 配有双向Hamming 距离为美元美元, 美元是构建错误校正调整代码的必要组成部分。 我们的技术, Exem 分区和扩展} 普遍适用于为所有美元和所有美元, 美元, 美元是美元的最大调值。 我们描述了三种新技术, $( $) 相继间隔和扩展距离至少为美元。 和 $( em 平行分割和扩展) 和 $( ) 修改 Kronecker 产品操作, 以不同的方式扩大分区和扩展的适用性。 我们描述分区和扩展如何通过相互或不同货币的拉丁方块( MOLS) 来改善M( n) 的 m( ) 校正( MOLS) 。 我们展示了用于计算新分区的更低比例分区的代代代代代代数( ) 的( Ralassalalalalalalalalal) 报告。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员