This paper introduces a novel convolution method, called generative convolution (GConv), which is simple yet effective for improving the generative adversarial network (GAN) performance. Unlike the standard convolution, GConv first selects useful kernels compatible with the given latent vector, and then linearly combines the selected kernels to make latent-specific kernels. Using the latent-specific kernels, the proposed method produces the latent-specific features which encourage the generator to produce high-quality images. This approach is simple but surprisingly effective. First, the GAN performance is significantly improved with a little additional hardware cost. Second, GConv can be employed to the existing state-of-the-art generators without modifying the network architecture. To reveal the superiority of GConv, this paper provides extensive experiments using various standard datasets including CIFAR-10, CIFAR-100, LSUN-Church, CelebA, and tiny-ImageNet. Quantitative evaluations prove that GConv significantly boosts the performances of the unconditional and conditional GANs in terms of Inception score (IS) and Frechet inception distance (FID). For example, the proposed method improves both FID and IS scores on the tiny-ImageNet dataset from 35.13 to 29.76 and 20.23 to 22.64, respectively.
翻译:本文介绍了一种新型的革命方法,称为基因变异(GConv),它简单而有效地改善了基因对抗网络(GAN)的性能。与标准的变迁不同,GConv首先选择与给定的潜向矢量相容的有用内核,然后将选定的内核进行线性结合,以形成潜在的特定内核。使用潜在的特定内核,建议的方法产生了鼓励生成器产生高质量图像的潜伏性特有特征。这种方法简单但令人惊讶地有效。首先,GAN性能以少量的硬件成本大大改善。第二,GConv可以被用于现有的最先进的发电机,而不改变网络结构。为了揭示Gonv的优越性,本文提供了广泛的实验,使用了各种标准数据集,包括CIFAR-10、CIFAR-100、LSUN-Church、CelebA和小图像网。定量评估证明GConv 大大提升了GAN的无条件和条件性GAN的性能,从Incepion分级分数(IS)和FID 20-23分别改进了IS的距离和FID方法。