We show posterior convergence for the community structure in the planted bi-section model, for several interesting priors. Examples include where the label on each vertex is iid Bernoulli distributed, with some parameter $r\in(0,1)$. The parameter $r$ may be fixed, or equipped with a beta distribution. We do not have constraints on the class sizes, which might be as small as zero, or include all vertices, and everything in between. This enables us to test between a uniform (Erd\"os-R\'enyi) random graph with no distinguishable community or the planted bi-section model. The exact bounds for posterior convergence enable us to convert credible sets into confidence sets. Symmetric testing with posterior odds is shown to be consistent.


翻译:我们展示了种植的两部分模型中社区结构的后端趋同, 用于几个有趣的前科。 例如, 每个顶端的标签是 id Bernoulli 分布的 iid Bernoulli, 配有某些 $r\ in ( 0, 1) 参数 。 参数 $ 可以是固定的, 或配有 bita 分布 。 我们对于等级大小没有限制, 可能小于零, 或包括所有顶点, 以及两者之间的一切。 这使我们能够测试制服( Erd\'os- R\' enyi) 随机图, 没有区分社区, 或 配置的双部分模型 。 后端趋同的确切界限使我们能够将可信的数据集转换为信任套。 显示后端概率的对称测试是一致的 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
0+阅读 · 2021年7月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员