In this paper, we consider model order reduction for bilinear systems with non-zero initial conditions. We discuss choices of Gramians for both the homogeneous and the inhomogeneous parts of the system individually and prove how these Gramians characterize the respective dominant subspaces of each of the two subsystems. Proposing different, not necessarily structure preserving, reduced order methods for each subsystem, we establish several strategies to reduce the dimension of the full system. For all these approaches, error bounds are shown depending on the truncated Hankel singular values of the subsystems. Besides the error analysis, stability is discussed. In particular, a focus is on a new criterion for the homogeneous subsystem guaranteeing the existence of the associated Gramians and an asymptotically stable realization of the system.
翻译:在本文中,我们考虑对非零初始条件的双线系统进行示范性减少订单;我们单独讨论格拉姆语对系统同质部分和不相容部分的选择,并证明这些格拉姆语对两个子系统各自主要次空间的特点。我们提出不同、不一定结构上保持、减少每个子系统秩序的方法,我们为减少整个系统的维度制定若干战略。对于所有这些方法,根据子系统截断的汉盖尔单数值来显示错误界限。除了错误分析外,还讨论稳定性。特别是,重点是单一子系统的新标准,以保证相关格拉姆人的存在,以及系统实现的无症状稳定。