We present LearnedFTL, which applies learned indexes to on-demand page-level flash translation layer (FTL) designs to improve the random read performance of flash-based solid-state drives (SSDs). The first of its kind, it minimizes the number of double reads induced by address translation in random read accesses. To apply the learned indexes to address translation, LearnedFTL proposes dynamic piece-wise regression to efficiently build learned indexes. LearnedFTL also exploits the unique feature of page relocation in SSD internal garbage collection (GC), and embeds the learned index training in GC, which can minimize additional delay on normal read and write operations. Additionally, LearnedFTL employs a bitmap prediction filter to guarantee the accuracy of learned indexes' predictions. With these designs, LearnedFTL considerably speeds up address translation while reducing the number of flash read accesses caused by the demand-based page-level FTL. Our benchmark-driven experiments on a FEMU-based prototype show that LearnedFTL reduces the 99th percentile tail latency by 4.8$\times$, on average, compared to the state-of-the-art TPFTL scheme.
翻译:我们提出了LearnedFTL,它将学习索引应用于按需页面级快闪存储器转换层(FTL)设计中,以改善闪存固态硬盘(SSD)中的随机读取性能。这是第一种此类设计,它最小化了随机读取访问中地址转换引起的双重读取数量。为了将学习索引应用于地址转换,LearnedFTL提出了动态分段回归来高效地构建学习索引。此外,LearnedFTL利用了SSD内部垃圾回收中页面重定位的独特特征,并将学习索引训练嵌入到垃圾回收中,可以最小化对普通读写操作的额外延迟。此外,LearnedFTL使用位图预测过滤器来保证学习索引预测的准确性。通过这些设计,LearnedFTL可以显著加快地址转换的速度,同时减少基于需求的页面级FTL导致的闪存读取访问次数。我们在基于FEMU的原型上进行基准测试的实验证明,与最先进的TPFTL方案相比,LearnedFTL可将99分位尾延迟平均降低4.8倍。