【深度强化学习教程】高质量PyTorch实现集锦

2018 年 10 月 22 日 专知


【导读】包含用PyTorch语言编写的深度强化学习算法的高质量实现。



作者:这些IPython笔记本的目的主要是帮助我练习和理解我读过的论文;因此,在某些情况下,我将选择可读性而不是效率。首先,我会上传论文的实现,然后是标记来解释代码的每一部分。


相关论文



  1. Human Level Control Through Deep Reinforement Learning

     [Publication] https://deepmind.com/research/publications/human-level-control-through-deep-reinforcement-learning/

     [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/01.DQN.ipynb

  2. Multi-Step Learning (from Reinforcement Learning: An Introduction, Chapter 7) 

    [Publication] https://github.com/qfettes/DeepRL-Tutorials/blob/master/01.DQN.ipynb

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/02.NStep_DQN.ipynb

  3. Deep Reinforcement Learning with Double Q-learning 

    [Publication] https://arxiv.org/abs/1509.06461

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/03.Double_DQN.ipynb

  4. Dueling Network Architectures for Deep Reinforcement Learning 

    [Publication] https://arxiv.org/abs/1511.06581

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/04.Dueling_DQN.ipynb

  5. Noisy Networks for Exploration 

    [Publication] https://github.com/qfettes/DeepRL-Tutorials/blob/master/04.Dueling_DQN.ipynb

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/05.DQN-NoisyNets.ipynb

  6. Prioritized Experience Replay 

    [Publication] https://arxiv.org/abs/1511.05952?context=cs

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/06.DQN_PriorityReplay.ipynb

  7. A Distributional Perspective on Reinforcement Learning 

    [Publication] https://arxiv.org/abs/1707.06887

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/07.Categorical-DQN.ipynb

  8. Rainbow: Combining Improvements in Deep Reinforcement Learning 

    [Publication] https://arxiv.org/abs/1710.02298

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/08.Rainbow.ipynb

  9. Distributional Reinforcement Learning with Quantile Regression 

    [Publication] https://arxiv.org/abs/1710.10044

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/09.QuantileRegression-DQN.ipynb

  10. Rainbow with Quantile Regression 

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/10.Quantile-Rainbow.ipynb

  11. Deep Recurrent Q-Learning for Partially Observable MDPs 

    [Publication] https://arxiv.org/abs/1507.06527

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/11.DRQN.ipynb

  12. Advantage Actor Critic (A2C) 

    [Publication1] https://arxiv.org/abs/1602.01783

    [Publication2] https://blog.openai.com/baselines-acktr-a2c/

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/12.A2C.ipynb

  13. High-Dimensional Continuous Control Using Generalized Advantage Estimation 

    [Publication] https://arxiv.org/abs/1506.02438

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/13.GAE.ipynb

  14. Proximal Policy Optimization Algorithms 

    [Publication] https://arxiv.org/abs/1707.06347

    [code] https://github.com/qfettes/DeepRL-Tutorials/blob/master/14.PPO.ipynb


PyTorch实现



DeepRL-Tutorials

https://github.com/qfettes/DeepRL-Tutorials


-END-

专 · 知


欢迎微信扫描下方二维码加入专知人工智能知识星球群,获取更多人工智能领域专业知识教程视频资料和与专家交流咨询!



登录www.zhuanzhi.ai或者点击阅读原文,使用专知,可获取更多AI知识资料!


专知运用有多个深度学习主题群,欢迎各位添加专知小助手微信(下方二维码)进群交流(请备注主题类型:AI、NLP、CV、 KG等)

 AI 项目技术 & 商务合作:bd@zhuanzhi.ai, 或扫描上面二维码联系!

请关注专知公众号,获取人工智能的专业知识!

点击“阅读原文”,使用专知

登录查看更多
12

相关内容

专知会员服务
110+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
2019必读的十大深度强化学习论文
专知会员服务
59+阅读 · 2020年1月16日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
120+阅读 · 2019年12月31日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
17种深度强化学习算法用Pytorch实现
新智元
30+阅读 · 2019年9月16日
Python机器学习课程(代码与教程)
专知
36+阅读 · 2019年5月13日
PyTorch实现多种深度强化学习算法
专知
36+阅读 · 2019年1月15日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
【代码集合】深度强化学习Pytorch实现集锦
机器学习算法与Python学习
8+阅读 · 2018年10月23日
机器学习的Pytorch实现资源集合
专知
11+阅读 · 2018年9月1日
用PyTorch实现各种GANs(附论文和代码地址)
TensorFlow实现深度学习算法的教程汇集:代码+笔记
数据挖掘入门与实战
8+阅读 · 2017年12月10日
推荐|深度学习PyTorch的教程代码
全球人工智能
10+阅读 · 2017年10月8日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
4+阅读 · 2019年12月2日
Symbolic Priors for RNN-based Semantic Parsing
Arxiv
3+阅读 · 2018年9月20日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
专知会员服务
110+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
2019必读的十大深度强化学习论文
专知会员服务
59+阅读 · 2020年1月16日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
120+阅读 · 2019年12月31日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
17种深度强化学习算法用Pytorch实现
新智元
30+阅读 · 2019年9月16日
Python机器学习课程(代码与教程)
专知
36+阅读 · 2019年5月13日
PyTorch实现多种深度强化学习算法
专知
36+阅读 · 2019年1月15日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
【代码集合】深度强化学习Pytorch实现集锦
机器学习算法与Python学习
8+阅读 · 2018年10月23日
机器学习的Pytorch实现资源集合
专知
11+阅读 · 2018年9月1日
用PyTorch实现各种GANs(附论文和代码地址)
TensorFlow实现深度学习算法的教程汇集:代码+笔记
数据挖掘入门与实战
8+阅读 · 2017年12月10日
推荐|深度学习PyTorch的教程代码
全球人工智能
10+阅读 · 2017年10月8日
相关论文
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
4+阅读 · 2019年12月2日
Symbolic Priors for RNN-based Semantic Parsing
Arxiv
3+阅读 · 2018年9月20日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
25+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员