We provide new tradeoffs between approximation and running time for the decremental all-pairs shortest paths (APSP) problem. For undirected graphs with $m$ edges and $n$ nodes undergoing edge deletions, we provide two new approximate decremental APSP algorithms, one for weighted and one for unweighted graphs. Our first result is an algorithm that supports $(2+ \epsilon)$-approximate all-pairs constant-time distance queries with total update time $\tilde{O}(m^{1/2}n^{3/2})$ when $m= O(n^{5/3})$ (and $m= n^{1+c}$ for any constant $c >0$), or $\tilde{O}(mn^{2/3})$ when $m = \Omega(n^{5/3})$. Prior to our work the fastest algorithm for weighted graphs with approximation at most $3$ had total $\tilde O(mn)$ update time [Bernstein, SICOMP'16]. Our technique also yields a decremental algorithm with total update time $\tilde{O}(nm^{3/4})$ supporting $(2+\epsilon, W_{u,v})$-approximate queries. Our second result is a decremental algorithm that given an unweighted graph and a constant integer $k \geq 2 $, supports $(1+\epsilon, 2(k-1))$-approximate queries and has $\tilde{O}(n^{2-1/k}m^{1/k})$ total update time (when $m=n^{1+c}$ for any constant $c >0$). For comparison, in the special case of $(1+\epsilon, 2)$-approximation, this improves over the state-of-the-art by [Henzinger et al., SICOMP'16] with total update time of $\tilde{O}(n^{2.5})$. All of our results are randomized and work against an oblivious adversary. Our approach also leads to a new static distance oracle construction. In particular, we construct a distance oracle in $\tilde O(mn^{2/3})$ time that supports constant time $2$-approximate queries. For sparse graphs, the preprocessing time of the algorithm matches conditional lower bounds [Patrascu et al., FOCS'12; Abboud et al., STOC'23]. To the best of our knowledge, this is the first 2-approximate distance oracle that has subquadratic preprocessing time in sparse graphs.


翻译:我们提供近距离和运行时间之间的新折算, 用于快速的全色路径( APSP) 问题 。 对于有 美元边缘值和 美元节点的非方向图表, 正在边缘删除, 我们提供两种接近 APSP 算法, 一个用于加权, 一个用于未加权的图形。 我们的第一个结果是一个支持 $ (2+\\ epsilon) $- 近似所有时间的直径查询, 其总更新时间 $ (tilde{O} (m ⁇ 1/2} n} 3/2} 美元 。 当 美元 以 O( 美元) 亮度1美元 和 美元节点的节点 。 当 美元=\\\\ 美元= (m%) 和 特别的 。 在我们的工作之前, 以 3美元 的近似总更新 美元 O (m) 更新时间 [Bernsteard, COM= 3⁄4 美元] (m) 我们的技术 更新一个总更新时间 美元 。

0
下载
关闭预览

相关内容

《AI中毒攻击》34页slides
专知会员服务
26+阅读 · 2022年10月17日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
41+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
校招 | Girl for IT — 初入职场的妳们
微软招聘
0+阅读 · 2022年6月23日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月1日
VIP会员
相关VIP内容
《AI中毒攻击》34页slides
专知会员服务
26+阅读 · 2022年10月17日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
41+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
校招 | Girl for IT — 初入职场的妳们
微软招聘
0+阅读 · 2022年6月23日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员