Storage disaggregation is fundamental to today's cloud due to cost and scalability benefits. Unfortunately, this design must cope with an inherent network bottleneck between the storage and the compute tiers. The widely deployed mitigation strategy is to provide computational resources next to storage to push down a part of an application and thus reduce the amount of data transferred to the compute tier. Overall, users of disaggregated storage need to consider two main constraints: the network may remain a bottleneck, and the storage-side computational resources are limited. This paper identifies transfer learning (TL) as a natural fit for the disaggregated cloud. TL, famously described as the next driver of ML commercial success, is widely popular and has broad-range applications. We show how to leverage the unique structure of TL's fine-tuning phase (i.e., a combination of feature extraction and training) to flexibly address the aforementioned constraints and improve both user and operator-centric metrics. The key to improving user-perceived performance is to mitigate the network bottleneck by carefully splitting the TL deep neural network (DNN) such that feature extraction is, partially or entirely, executed next to storage. Crucially, such splitting enables decoupling the batch size of feature extraction from the training batch size, facilitating efficient storage-side batch size adaptation to increase concurrency in the storage tier while avoiding out-of-memory errors. Guided by these insights, we present HAPI, a processing system for TL that spans the compute and storage tiers while remaining transparent to the user. Our evaluation with several DNNs, such as ResNet, VGG, and Transformer, shows up to 11x improvement in application runtime and up to 8.3x reduction in the data transferred from the storage to the compute tier compared to running the computation in the compute tier.


翻译:由于成本和可缩缩的效益,对今天的云层而言,存储的分解是基本的。 不幸的是, 此设计必须应对存储层和计算层之间固有的网络瓶颈。 广泛部署的缓解战略是提供存储处旁边的计算资源, 以推下应用程序的一部分, 从而减少转移到计算层的数据数量。 总体而言, 分类存储的用户需要考虑两个主要制约因素: 网络可能仍然是一个瓶颈, 存储端计算资源有限。 本文将传输学习( TL) 确定为分解云层的自然适应性。 以ML 商业成功的下一个驱动者为名的 TL 。 广度部署的缓解战略是提供计算资源, 将存储库的独特的结构( 即功能提取和培训的组合), 以灵活的方式解决上述制约因素, 改善用户和操作器中心的测量资源。 改进网络的连接点是, 仔细地将深度的内置的内置系统( DNNU ) 转换为ML 商业成功的下一个驱动力驱动力驱动器,, 将精细的存储层的存储系统升级升级到升级,, 升级的存储器的存储器的存储中, 运行的升级到升级的升级的存储,, 升级到升级到升级到升级到升级到升级的存储, 运行到升级到升级的存储的升级到升级到升级到升级到升级到升级到升级到升级到升级到升级的存储,, 性, 性,,, 运行到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级到升级。

1
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
21+阅读 · 2021年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员