Manually analyzing spermatozoa is a tremendous task for biologists due to the many fast-moving spermatozoa, causing inconsistencies in the quality of the assessments. Therefore, computer-assisted sperm analysis (CASA) has become a popular solution. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30s of spermatozoa with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. VISEM-Tracking is an extension of the previously published VISEM dataset. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning model trained on the VISEM-Tracking dataset. As a result, the dataset can be used to train complex deep-learning models to analyze spermatozoa. The dataset is publicly available at https://zenodo.org/record/7293726.
翻译:对精子进行人工分析对于生物学家来说是一项艰巨的任务,因为许多快速移动的精子蛋蛋,造成评估质量的不一致。因此,计算机辅助精子分析(CASA)已成为流行的解决办法。尽管如此,为了提高准确性和可靠性,还需要有更多的数据来培训监督的机器学习方法,以提高准确性和可靠性。在这方面,我们提供一套称为VISEM-Tracking的数据集,配有20个精子30年代的视频记录,配有手动附加说明的捆绑盒坐标和一组精子特征,由该领域的专家分析。VISEM-Tracing是先前公布的VISEM数据集的延伸。除了附加说明的数据外,我们还提供未贴标签的视频剪辑,供容易使用的数据取用和分析。作为本文的一部分,我们利用在VISEM-Tracing数据集上培训的YOLOv5深层学习模型,介绍基线精子检测的性能。结果,数据集可用于培训复杂的深层学习模型分析精子蛋。数据集系统可公开查阅 https://zenodododo.org/recordy726.