Online double auctions (DAs) model a dynamic two-sided matching problem with private information and self-interest, and are relevant for dynamic resource and task allocation problems. We present a general method to design truthful DAs, such that no agent can benefit from misreporting its arrival time, duration, or value. The family of DAs is parameterized by a pricing rule, and includes a generalization of McAfee's truthful DA to this dynamic setting. We present an empirical study, in which we study the allocative-surplus and agent surplus for a number of different DAs. Our results illustrate that dynamic pricing rules are important to provide good market efficiency for markets with high volatility or low volume.
翻译:在线双向拍卖(DAs)模式是一个动态的双面匹配问题,它与私人信息和自身利益相匹配,与动态资源和任务分配问题相关。我们提出了一个设计真实的DA(DA)的一般方法,使任何代理商都无法从错误报告其到达时间、期限或价值中受益。DA(DAs)的家族都以定价规则为参数,并将McAfee的诚实的DA(DA)与这种动态环境相提并论。我们介绍了一项经验性研究,我们在这项研究中研究了不同DA(DA)的配给性盈余和代理商盈余。我们的结果表明,动态定价规则对于为高度波动或低量的市场提供良好的市场效率非常重要。