In this paper, graph attention network (GAT) is firstly utilized for the channel estimation. In accordance with the 6G expectations, we consider a high-altitude platform station (HAPS) mounted reconfigurable intelligent surface-assisted two-way communications and obtain a low overhead and a high normalized mean square error performance. The performance of the proposed method is investigated on the two-way backhauling link over the RIS-integrated HAPS. The simulation results denote that the GAT estimator overperforms the least square in full-duplex channel estimation. Contrary to the previously introduced methods, GAT at one of the nodes can separately estimate the cascaded channel coefficients. Thus, there is no need to use time-division duplex mode during pilot signaling in full-duplex communication. Moreover, it is shown that the GAT estimator is robust to hardware imperfections and changes in small-scale fading characteristics even if the training data do not include all these variations.


翻译:在本文中,图形关注网络(GAT)首先用于频道估算。 根据 6G 的预期, 我们考虑高高度平台站(HAPS) 安装了可重新配置智能地表辅助双向通信, 并获得了低管理费和高正态平均正方差性能。 所建议方法的性能在RIS- 集成 HAPS 的双向背航链路上进行了调查。 模拟结果显示, GAT 估计器在全复式频道估测中超过最低平方值。 与先前采用的方法相反, 一个节点的GAT 可以分别估算串联通道系数。 因此, 在全复式通信的试点信号中, 不需要使用时间分解模式。 此外, 显示, GAT 估计器对于硬件的缺陷和小规模淡化特性的改变是强大的, 即使培训数据不包括所有这些变异。

0
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年5月25日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员