We present a deep neural network to predict structural similarity between 2D layouts by leveraging Graph Matching Networks (GMN). Our network, coined LayoutGMN, learns the layout metric via neural graph matching, using an attention-based GMN designed under a triplet network setting. To train our network, we utilize weak labels obtained by pixel-wise Intersection-over-Union (IoUs) to define the triplet loss. Importantly, LayoutGMN is built with a structural bias which can effectively compensate for the lack of structure awareness in IoUs. We demonstrate this on two prominent forms of layouts, viz., floorplans and UI designs, via retrieval experiments on large-scale datasets. In particular, retrieval results by our network better match human judgement of structural layout similarity compared to both IoUs and other baselines including a state-of-the-art method based on graph neural networks and image convolution. In addition, LayoutGMN is the first deep model to offer both metric learning of structural layout similarity and structural matching between layout elements.
翻译:我们展示了一个深层的神经网络,以利用图表匹配网络(GMN)来预测2D布局之间的结构相似性。我们的网络 — — 创建了布局GMN — — 利用在三重网络设置下设计的基于关注的GMN — — 通过神经图形匹配匹配学习布局度指标。为了培训我们的网络,我们使用了由像素的跨交联联盟(IoUs)获得的薄弱标签来定义三重损失。重要的是,布局GMN的构建带有结构性偏差,可以有效弥补IoUs对结构认识不足的情况。我们用两种突出的布局形式 — — 即地面规划和UIP设计 — — 通过大规模数据集的检索实验来展示。特别是,我们的网络的检索结果更好地匹配人类对结构布局的判断,与IoUs和其他基线(包括基于图形神经网络和图像变异性的最新方法)相似性。此外,布局GMN是第一个提供结构布局相似性和结构匹配性指标性学习的深层次模型。