In this paper, we propose a cutting plane algorithm based on DC (Difference-of-Convex) programming and DC cut for globally solving Mixed-Binary Linear Program (MBLP). We first use a classical DC programming formulation via the exact penalization to formulate MBLP as a DC program, which can be solved by DCA algorithm. Then, we focus on the construction of DC cuts, which serves either as a local cut (namely type-I DC cut) at feasible local minimizer of MBLP, or as a global cut (namely type-II DC cut) at infeasible local minimizer of MBLP if some particular assumptions are verified. Otherwise, the constructibility of DC cut is still unclear, and we propose to use classical global cuts (such as the Lift-and-Project cut) instead. Combining DC cut and classical global cuts, a cutting plane algorithm, namely DCCUT, is established for globally solving MBLP. The convergence theorem of DCCUT is proved. Restarting DCA in DCCUT helps to quickly update the upper bound solution and to introduce more DC cuts for lower bound improvement. A variant of DCCUT by introducing more classical global cuts in each iteration is proposed, and parallel versions of DCCUT and its variant are also designed which use the power of multiple processors for better performance. Numerical simulations of DCCUT type algorithms comparing with the classical cutting plane algorithm using Lift-and-Project cuts are reported. Tests on some specific samples and the MIPLIB 2017 benchmark dataset demonstrate the benefits of DC cut and good performance of DCCUT algorithms.


翻译:在本文中, 我们提议根据DC( 不同Convex) 编程和DC( 不同Convex) 编程裁剪飞机算法, 用于全球解决混合比线线程序( MBLP) 。 我们首先使用经典DC编程公式, 将MBLP 设计成一个DC程序, 可以通过DCA 算法来解决。 然后, 我们侧重于建造DC 裁剪, 要么在MBLP可行的本地最小化器( 即I DC 剪裁), 要么在全球范围削减MBLP( 如果某些特定假设得到校验, 将MBLP的本地最小化器( 即 II DC 剪裁 ) 。 否则, DC的裁剪裁率尚不明确, 我们提议使用经典的MBLPP( 如A- IG) 程序来将MBLP( 不同C ) 的本地缩略法进行本地最小化 。 DC- C 的缩略算法的缩略法, 也用来在DC- CLLU 和 DDC 的缩略法 中 的缩略法 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员