We consider two-stage robust optimization problems, which can be seen as games between a decision maker and an adversary. After the decision maker fixes part of the solution, the adversary chooses a scenario from a specified uncertainty set. Afterwards, the decision maker can react to this scenario by completing the partial first-stage solution to a full solution. We extend this classic setting by adding another adversary stage after the second decision-maker stage, which results in min-max-min-max problems, thus pushing two-stage settings further towards more general multi-stage problems. We focus on budgeted uncertainty sets and consider both the continuous and discrete case. For the former, we show that a wide range of robust combinatorial optimization problems can be decomposed into polynomially many subproblems, which can be solved in polynomial time for example in the case of (representative) selection. For the latter, we prove NP-hardness for a wide range of problems, but note that the special case where first- and second-stage adversarial costs are equal can remain solvable in polynomial time.


翻译:我们考虑的是两阶段强力优化问题,这可以被看作是决策者和对手之间的游戏。在决策者修正了解决方案的一部分之后,对手从特定的不确定因素中选择了一种情景。随后,决策者可以通过完成部分第一阶段解决方案来对这一情景作出反应,将完整的解决方案纳入第一级解决方案。我们在第二个决策者阶段之后又增加了另一个对抗阶段,从而导致微负负负负问题,从而将两阶段设置进一步推向更普遍的多阶段问题。我们侧重于预算的不确定性组,同时考虑连续和分立的个案。对于前者,我们表明大量强大的组合优化问题可以分解成多种子问题,例如(代表)选择,在多种时间可以解决。对于后一种情况,我们证明NP-硬性处理一系列广泛的问题,但指出,第一阶段和第二阶段的对抗性费用相等的特殊案例在多元时间内仍然可以溶解。

0
下载
关闭预览

相关内容

【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月12日
Learning the optimal regularizer for inverse problems
Arxiv
0+阅读 · 2021年6月11日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员