An important part when constructing multiple-choice questions (MCQs) for reading comprehension assessment are the distractors, the incorrect but preferably plausible answer options. In this paper, we present a new BERT-based method for automatically generating distractors using only a small-scale dataset. We also release a new such dataset of Swedish MCQs (used for training the model), and propose a methodology for assessing the generated distractors. Evaluation shows that from a student's perspective, our method generated one or more plausible distractors for more than 50% of the MCQs in our test set. From a teacher's perspective, about 50% of the generated distractors were deemed appropriate. We also do a thorough analysis of the results.
翻译:在构建阅读理解评估的多选择问题(MCQs)时,一个重要部分是分流器,不正确但最好可信的答案选项。在本文中,我们提出了一个基于BERT的新方法,仅使用小规模数据集自动生成分流器。我们还发布了瑞典分流器(用于培训模型)的新数据集,并提出了评估产生的分流器的方法。评估表明,从学生的角度看,我们的方法为我们测试集中超过50%的 MMCQs产生了一种或多种可信的分流器。从教师的角度看,大约50%的分流器被认为是合适的。我们还对结果进行了透彻的分析。