An important part when constructing multiple-choice questions (MCQs) for reading comprehension assessment are the distractors, the incorrect but preferably plausible answer options. In this paper, we present a new BERT-based method for automatically generating distractors using only a small-scale dataset. We also release a new such dataset of Swedish MCQs (used for training the model), and propose a methodology for assessing the generated distractors. Evaluation shows that from a student's perspective, our method generated one or more plausible distractors for more than 50% of the MCQs in our test set. From a teacher's perspective, about 50% of the generated distractors were deemed appropriate. We also do a thorough analysis of the results.


翻译:在构建阅读理解评估的多选择问题(MCQs)时,一个重要部分是分流器,不正确但最好可信的答案选项。在本文中,我们提出了一个基于BERT的新方法,仅使用小规模数据集自动生成分流器。我们还发布了瑞典分流器(用于培训模型)的新数据集,并提出了评估产生的分流器的方法。评估表明,从学生的角度看,我们的方法为我们测试集中超过50%的 MMCQs产生了一种或多种可信的分流器。从教师的角度看,大约50%的分流器被认为是合适的。我们还对结果进行了透彻的分析。

0
下载
关闭预览

相关内容

包括微软、CMU、Stanford在内的顶级人工智能专家和学者们正在研究更复杂的任务:让机器像人类一样阅读文本,进而根据对该文本的理解来回答问题。这种阅读理解就像是让计算机来做我们高考英语的阅读理解题。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《生成式对抗网络数学导论》,30页pdf
专知会员服务
79+阅读 · 2020年9月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
Generating Rationales in Visual Question Answering
Arxiv
5+阅读 · 2020年4月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
Top
微信扫码咨询专知VIP会员