Traditional approaches to building natural language (NL) interfaces typically use a semantic parser to parse the user command and convert it to a logical form, which is then translated to an executable action in an application. However, it is still challenging for a semantic parser to correctly parse natural language. For a different domain, the parser may need to be retrained or tuned, and a new translator also needs to be written to convert the logical forms to executable actions. In this work, we propose a novel and application independent approach to building NL interfaces that does not need a semantic parser or a translator. It is based on natural language to natural language matching and learning, where the representation of each action and each user command are both in natural language. To perform a user intended action, the system only needs to match the user command with the correct action representation, and then execute the corresponding action. The system also interactively learns new (paraphrased) commands for actions to expand the action representations over time. Our experimental results show the effectiveness of the proposed approach.


翻译:建立自然语言( NL) 界面的传统方法通常使用语义解析器来解析用户命令并将其转换为逻辑形式,然后将其转换为可执行的应用程序。 但是,对于语义解析器正确解析自然语言来说,对于语义解析器来说仍然具有挑战性。 对于不同的域, 分析器可能需要重新培训或调整, 新的翻译器也需要写成将逻辑形式转换为可执行的行动。 在这项工作中, 我们提议了一种创新和应用独立的方法来构建不需要语义解析器或翻译的 NL 界面。 它以自然语言为基础, 自然语言匹配和学习, 其中每个动作和每个用户命令的表述都使用自然语言。 为了执行用户想要的行动, 系统只需要将用户命令与正确的动作表达方式匹配, 然后执行相应的动作。 系统还以互动方式学习新的( 重新表达式) 命令, 以采取行动, 以随着时间扩展动作表达方式。 我们的实验结果显示了拟议方法的有效性 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2021年5月3日
Arxiv
4+阅读 · 2019年9月5日
Arxiv
5+阅读 · 2018年2月26日
VIP会员
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员