Traditional approaches to building natural language (NL) interfaces typically use a semantic parser to parse the user command and convert it to a logical form, which is then translated to an executable action in an application. However, it is still challenging for a semantic parser to correctly parse natural language. For a different domain, the parser may need to be retrained or tuned, and a new translator also needs to be written to convert the logical forms to executable actions. In this work, we propose a novel and application independent approach to building NL interfaces that does not need a semantic parser or a translator. It is based on natural language to natural language matching and learning, where the representation of each action and each user command are both in natural language. To perform a user intended action, the system only needs to match the user command with the correct action representation, and then execute the corresponding action. The system also interactively learns new (paraphrased) commands for actions to expand the action representations over time. Our experimental results show the effectiveness of the proposed approach.
翻译:建立自然语言( NL) 界面的传统方法通常使用语义解析器来解析用户命令并将其转换为逻辑形式,然后将其转换为可执行的应用程序。 但是,对于语义解析器正确解析自然语言来说,对于语义解析器来说仍然具有挑战性。 对于不同的域, 分析器可能需要重新培训或调整, 新的翻译器也需要写成将逻辑形式转换为可执行的行动。 在这项工作中, 我们提议了一种创新和应用独立的方法来构建不需要语义解析器或翻译的 NL 界面。 它以自然语言为基础, 自然语言匹配和学习, 其中每个动作和每个用户命令的表述都使用自然语言。 为了执行用户想要的行动, 系统只需要将用户命令与正确的动作表达方式匹配, 然后执行相应的动作。 系统还以互动方式学习新的( 重新表达式) 命令, 以采取行动, 以随着时间扩展动作表达方式。 我们的实验结果显示了拟议方法的有效性 。