It is shown here that a subset of the implicit analytical shock solutions discovered by Becker and by Johnson can be inverted, yielding several exact closed-form solutions of the one-dimensional compressible Navier-Stokes equations for an ideal gas. For a constant dynamic viscosity and thermal conductivity, and at particular values of the shock Mach number, the velocity can be expressed in terms of a polynomial root. For a constant kinematic viscosity, independent of Mach number, the velocity can be expressed in terms of a hyperbolic tangent function. The remaining fluid variables are related to the velocity through simple algebraic expressions. The solutions derived here make excellent verification tests for numerical algorithms, since no source terms in the evolution equations are approximated, and the closed-form expressions are straightforward to implement. The solutions are also of some academic interest as they may provide insight into the non-linear character of the Navier-Stokes equations and may stimulate further analytical developments.
翻译:这里显示,贝克尔和约翰逊发现的隐含分析冲击解决方案的一个子集可以倒转,产生一些精确的封闭式解决方案,用于理想气体的单维压缩式纳维-斯托克方程式。对于恒定动态粘度和热导力,以及冲击马赫号的特殊值,速度可以用多元根表示。对于恒定的运动对流性对流性,独立于马赫号,速度可以用双向正切函数表示。其余的流体变量通过简单的代数表达式与速度有关。这里得出的解决方案为数字算法提供了极好的验证测试,因为进化方程式中没有任何源术语是近似的,而封闭式表达法是可以直接执行的。这些解决方案还具有一定的学术兴趣,因为它们可以提供对纳维-斯托克斯方程式非线性特性的洞察,并可能刺激进一步的分析发展。