Enabling resilient autonomous motion planning requires robust predictions of surrounding road users' future behavior. In response to this need and the associated challenges, we introduce our model titled MTP-GO. The model encodes the scene using temporal graph neural networks to produce the inputs to an underlying motion model. The motion model is implemented using neural ordinary differential equations where the state-transition functions are learned with the rest of the model. Multimodal probabilistic predictions are obtained by combining the concept of mixture density networks and Kalman filtering. The results illustrate the predictive capabilities of the proposed model across various data sets, outperforming several state-of-the-art methods on a number of metrics.
翻译:为了实现具有韧性的自主运动规划,需要对周围道路使用者未来行为进行稳健的预测。为了应对这种需求和相关挑战,我们引入了我们的模型MTP-GO。该模型使用时间图神经网络对场景进行编码,从而产生基础运动模型的输入。该运动模型使用神经常微分方程实现,其中状态转移函数与模型的其余部分一起进行学习。通过结合混合密度网络和卡尔曼滤波的概念,可以获得多模态概率预测。结果展示了所提出模型在各种数据集上的预测能力,在多个度量标准上优于几种最新方法。