Motivated by applications in polymer-based data storage, we study the problem of reconstructing a string from part of its composition multiset. We give a full description of the structure of the strings that cannot be uniquely reconstructed (up to reversal) from their multiset of all of their prefix-suffix compositions. Leveraging this description, we prove that for all $n\ge 6$, there exists a string of length $n$ that cannot be uniquely reconstructed up to reversal. Moreover, for all $n\ge 6$, we explicitly construct the set consisting of all length $n$ strings that can be uniquely reconstructed up to reversal. As a by product, we obtain that any binary string can be constructed using Dyck strings and Catalan-Bertrand strings. For any given string $\bbs$, we provide a method to explicitly construct the set of all strings with the same prefix-suffix composition multiset as $\bbs$, as well as a formula for the size of this set. As an application, we construct a composition code of maximal size. Furthermore, we construct two classes of composition codes which can respectively correct composition missing errors and mass reducing substitution errors. In addition, we raise two new problems: reconstructing a string from its composition multiset when at most a constant number of substring compositions are lost; reconstructing a string when only given its compositions of substrings of length at most $r$. For each of these setups, we give suitable codes under some conditions.
翻译:受聚合物数据存储应用的驱动, 我们研究将字符串从成份多套中的一部分重建成字符串的问题。 我们充分描述无法从这些字符串的多套组合( 直至倒转) 重建的字符串结构。 利用这一描述, 我们证明对于所有 $n\ge 6 美元来说, 有一个长度的字符串, 无法在倒转之前进行唯一重建。 此外, 对于所有基于聚合物的数据存储, 我们明确构建一个长度的 $n$, 无法在翻转之前重新重建。 此外, 我们明确构建由所有长度组成的字符串结构( 直至倒转) 。 对于所有这些字符串的字符串结构, 我们使用 Dyck 字符串和 Catalan- Bertrand 字符串的多个组合结构。 对于任何给定的字符串 $\bs, 我们提供一种方法, 明确构建所有字符串的字符串组合的数据集, 以$\bbbset $ 为多个,, 以及此集大小的公式。 作为应用程序, 我们构建一个最大尺寸的拼写代码的拼写代码, 我们用两个错误来校正的序列中, 。