Motivated by applications in polymer-based data storage, we study the problem of reconstructing a string from part of its composition multiset. We give a full description of the structure of the strings that cannot be uniquely reconstructed (up to reversal) from their multiset of all of their prefix-suffix compositions. Leveraging this description, we prove that for all $n\ge 6$, there exists a string of length $n$ that cannot be uniquely reconstructed up to reversal. Moreover, for all $n\ge 6$, we explicitly construct the set consisting of all length $n$ strings that can be uniquely reconstructed up to reversal. As a by product, we obtain that any binary string can be constructed using Dyck strings and Catalan-Bertrand strings. For any given string $\bbs$, we provide a method to explicitly construct the set of all strings with the same prefix-suffix composition multiset as $\bbs$, as well as a formula for the size of this set. As an application, we construct a composition code of maximal size. Furthermore, we construct two classes of composition codes which can respectively correct composition missing errors and mass reducing substitution errors. In addition, we raise two new problems: reconstructing a string from its composition multiset when at most a constant number of substring compositions are lost; reconstructing a string when only given its compositions of substrings of length at most $r$. For each of these setups, we give suitable codes under some conditions.


翻译:受聚合物数据存储应用的驱动, 我们研究将字符串从成份多套中的一部分重建成字符串的问题。 我们充分描述无法从这些字符串的多套组合( 直至倒转) 重建的字符串结构。 利用这一描述, 我们证明对于所有 $n\ge 6 美元来说, 有一个长度的字符串, 无法在倒转之前进行唯一重建。 此外, 对于所有基于聚合物的数据存储, 我们明确构建一个长度的 $n$, 无法在翻转之前重新重建。 此外, 我们明确构建由所有长度组成的字符串结构( 直至倒转) 。 对于所有这些字符串的字符串结构, 我们使用 Dyck 字符串和 Catalan- Bertrand 字符串的多个组合结构。 对于任何给定的字符串 $\bs, 我们提供一种方法, 明确构建所有字符串的字符串组合的数据集, 以$\bbbset $ 为多个,, 以及此集大小的公式。 作为应用程序, 我们构建一个最大尺寸的拼写代码的拼写代码, 我们用两个错误来校正的序列中, 。

0
下载
关闭预览

相关内容

在数学中,多重集是对集的概念的修改,与集不同,集对每个元素允许多个实例。 为每个元素提供的实例的正整数个数称为该元素在多重集中的多重性。 结果存在无限多个多重集,它们仅包含元素a和b,但因元素的多样性而变化:(1)集{a,b}仅包含元素a和b,当将{a,b}视为多集时,每个元素的多重性为1;(2)在多重集{a,a,b}中,元素a具有多重性2,而b具有多重性1;(3)在多集{a,a,a,b,b,b}中,a和b都具有多重性3。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
0+阅读 · 2022年10月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员