Accurate traffic prediction is a challenging task in intelligent transportation systems because of the complex spatio-temporal dependencies in transportation networks. Many existing works utilize sophisticated temporal modeling approaches to incorporate with graph convolution networks (GCNs) for capturing short-term and long-term spatio-temporal dependencies. However, these separated modules with complicated designs could restrict effectiveness and efficiency of spatio-temporal representation learning. Furthermore, most previous works adopt the fixed graph construction methods to characterize the global spatio-temporal relations, which limits the learning capability of the model for different time periods and even different data scenarios. To overcome these limitations, we propose an automated dilated spatio-temporal synchronous graph network, named Auto-DSTSGN for traffic prediction. Specifically, we design an automated dilated spatio-temporal synchronous graph (Auto-DSTSG) module to capture the short-term and long-term spatio-temporal correlations by stacking deeper layers with dilation factors in an increasing order. Further, we propose a graph structure search approach to automatically construct the spatio-temporal synchronous graph that can adapt to different data scenarios. Extensive experiments on four real-world datasets demonstrate that our model can achieve about 10% improvements compared with the state-of-art methods. Source codes are available at https://github.com/jinguangyin/Auto-DSTSGN.
翻译:准确的交通预测是智能运输系统的一项艰巨任务,因为运输网络具有复杂的时空依赖性,因此智能运输系统是一项具有挑战性的任务。许多现有工程使用复杂的时间模型方法,与图形变形网络(GCNs)整合,以捕捉短期和长期的时空依赖性。然而,这些设计复杂的模块可能会限制空间-时空代表性学习的效果和效率。此外,大多数以往的工程都采用固定的图形构建方法来描述全球时空关系的特点,这限制了该模型在不同时期甚至不同数据假设情景的学习能力。为了克服这些局限性,我们提议与图形变形变形网络(GCNs)整合一个自动拉热的时空同步图形网络(GCNs),名为Auto-DSTSGN,用于交通预测。具体地,我们设计了一个自动变色的时空同步图形同步图(Auto-DSTSGs)模块,用以测量短期和长期的时空-时空关系,通过将更深层与更深层的相调因素相调来改变模型/时空局。此外,我们提议一个数字结构结构搜索了我们不同的图表结构,以自动构建了10世界的模型,可以用来构建。我们可以对地模拟的模型的模型的模型的模型进行空间的模型的模型的模型,可以对10号进行空间的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型进行自我分析。