Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown rank. In this paper, we introduce neural networks into the ranking recovery problem by proposing the so-called GNNRank, a trainable GNN-based framework with digraph embedding. Moreover, new objectives are devised to encode ranking upsets/violations. The framework involves a ranking score estimation approach, and adds an inductive bias by unfolding the Fiedler vector computation of the graph constructed from a learnable similarity matrix. Experimental results on extensive data sets show that our methods attain competitive and often superior performance against baselines, as well as showing promising transfer ability. Codes and preprocessed data are at: \url{https://github.com/SherylHYX/GNNRank}.


翻译:从对称比较中重新获得全球排名,从时间同步到体育队排名都有广泛的应用。与竞争中匹配相对比的对称比较可被解释为定向图表(分数图)中的边缘,其节点代表着例如名次不明的竞争者。在本文中,我们通过提出所谓的GNNNank(一个以GNNN为基础的可训练框架,并嵌入分数。此外,还制定了新的目标,以编码扰动/违规的排序。该框架包含一个分数估计方法,并通过对从可学习的相似性矩阵构建的图表进行纤维化向量计算,增加了一种诱导偏差。广泛数据集的实验结果显示,我们的方法在基线上达到了竞争性和通常优异性性性,并展示了有希望的转移能力。代码和预处理的数据在:\url{https://github.com/SheryhyX/GNRANank}。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月29日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
58+阅读 · 2021年5月3日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关论文
Arxiv
0+阅读 · 2022年7月29日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
58+阅读 · 2021年5月3日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员