We propose the deep progressive image compression using trit-planes (DPICT) algorithm, which is the first learning-based codec supporting fine granular scalability (FGS). First, we transform an image into a latent tensor using an analysis network. Then, we represent the latent tensor in ternary digits (trits) and encode it into a compressed bitstream trit-plane by trit-plane in the decreasing order of significance. Moreover, within each trit-plane, we sort the trits according to their rate-distortion priorities and transmit more important information first. Since the compression network is less optimized for the cases of using fewer trit-planes, we develop a postprocessing network for refining reconstructed images at low rates. Experimental results show that DPICT outperforms conventional progressive codecs significantly, while enabling FGS transmission. Codes are available at https://github.com/jaehanlee-mcl/DPICT.
翻译:我们建议使用三重飞机(DPICT)算法进行深层累进图像压缩,这是第一个基于学习的代码支持细微颗粒缩放能力(FGS)。首先,我们使用分析网络将图像转换成潜色拉。然后,我们用一个分析网络将一幅图像转换成一个隐性微粒。然后,我们代表一个隐性恒温,在短数字(trits)中,用三重飞机将其编码成一个压缩式的三重微粒机,在重要性下降的顺序上,由三重平机将其编码成压缩式的三重体。此外,我们在每个三重平面机(DPICT)中,我们根据速度扭曲的优先顺序对三重体进行分类,并首先传播更重要的信息。由于压缩网络在使用更少三重平面平面平面平面平面平面平面平面时,我们开发了一个后处理网络,以低速对再生图像进行精炼。实验结果表明,二重平面平面图像大大超越常规的累进码,同时能够传输FGS。代码可在http://github.com/jahanhanlelelelee-mcleeleelee-m/DPICt/DPICt。