Low-rank tensor approximations have shown great potential for uncertainty quantification in high dimensions, for example, to build surrogate models that can be used to speed up large-scale inference problems (Eigel et al., Inverse Problems 34, 2018; Dolgov et al., Statistics & Computing 30, 2020). The feasibility and efficiency of such approaches depends critically on the rank that is necessary to represent or approximate the underlying distribution. In this paper, a-priori rank bounds for approximations in the functional tensor-train representation for the case of Gaussian models are developed. It is shown that under suitable conditions on the precision matrix, the Gaussian density can be approximated to high accuracy without suffering from an exponential growth of complexity as the dimension increases. These results provide a rigorous justification of the suitability and the limitations of low-rank tensor methods in a simple but important model case. Numerical experiments confirm that the rank bounds capture the qualitative behavior of the rank structure when varying the parameters of the precision matrix and the accuracy of the approximation. Finally, the practical relevance of the theoretical results is demonstrated in the context of a Bayesian filtering problem.


翻译:低温度近似值表明,在高斯模型的功能性抗压力代表值中,具有巨大的不确定性量化潜力,例如,可以建立替代模型,用以加速大规模推论问题(Eigel等人,Inverse Laisses 34, 2018年;Dolgov等人, Dolgov等人, 30, 2020年),这些方法的可行性和效率主要取决于代表或接近基本分布所需的等级。在本文中,为高斯模型的功能性抗压力代表值的近似值制定了一个优先等级界限。在精确矩阵的适当条件下,高斯密度可以近似为高度精确度,而不会随着尺寸的增加而因复杂性的急剧增长而受到影响。这些结果为在一个简单但重要的模型案例中,低温方法的适宜性和局限性提供了严格的理由。数字实验证实,当精确矩阵参数和近似值的准确性不同时,等级界限反映了等级结构的质量行为。最后,理论结果的实际相关性在海湾过滤问题的背景下得到了证明。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员