When subjected to automated decision-making, decision subjects may strategically modify their observable features in ways they believe will maximize their chances of receiving a favorable decision. In many practical situations, the underlying assessment rule is deliberately kept secret to avoid gaming and maintain competitive advantage. The resulting opacity forces the decision subjects to rely on incomplete information when making strategic feature modifications. We capture such settings as a game of Bayesian persuasion, in which the decision maker offers a form of recourse to the decision subject by providing them with an action recommendation (or signal) to incentivize them to modify their features in desirable ways. We show that when using persuasion, both the decision maker and decision subject are never worse off in expectation, while the decision maker can be significantly better off. While the decision maker's problem of finding the optimal Bayesian incentive-compatible (BIC) signaling policy takes the form of optimization over infinitely-many variables, we show that this optimization can be cast as a linear program over finitely-many regions of the space of possible assessment rules. While this reformulation simplifies the problem dramatically, solving the linear program requires reasoning about exponentially-many variables, even under relatively simple settings. Motivated by this observation, we provide a polynomial-time approximation scheme that recovers a near-optimal signaling policy. Finally, our numerical simulations on semi-synthetic data empirically illustrate the benefits of using persuasion in the algorithmic recourse setting.


翻译:当进行自动化决策时,决策主体可能会从战略上改变其可观察特征,其方式是他们认为最大限度地增加获得有利决定的机会。在许多实际情况下,基本评估规则被故意保密,以避免赌博和保持竞争优势。由此产生的不透明迫使决策主体在进行战略特征修改时依赖不完整信息。我们捕捉了诸如贝叶西亚说服游戏这样的环境,即决策者提供了行动建议(或信号),以激励他们以理想的方式修改其可观察特征。我们表明,在使用说服时,决策者和决定主题都永远不会比预期更糟糕,而决策者则会做得更好。虽然决策者在寻找最佳巴伊西亚激励兼容性(BBIC)信号政策时遇到的难题,其形式是对无限多变变量的优化,我们显示,这种优化可以被描绘成一个线性程序,而不是以有限的多种方式修改可能的评估规则的空间。我们这种重新制定的方法,甚至大大地简化了问题,而解决接近直线性方案时,需要用一个相对的指数性模型推理,我们最后要用一种指数推算的模型来恢复我们的数据。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员