We consider assessing causal mediation in the presence of a post-treatment event (examples include noncompliance, a clinical event, or a terminal event). We identify natural mediation effects for the entire study population and for each principal stratum characterized by the joint potential values of the post-treatment event. We derive efficient influence functions for each mediation estimand, which motivate a set of multiply robust estimators for inference. The multiply robust estimators are consistent under four types of misspecifications and are efficient when all nuisance models are correctly specified. We illustrate our methods via simulations and two real data examples.
翻译:暂无翻译