The PL geometric category of a polyhedron $P$, denoted $\hbox{plgcat}(P)$, provides a natural upper bound for the Lusternik--Schnirelmann category and it is defined as the minimum number of PL collapsible subpolyhedra of $P$ that cover $P$. In dimension 2 the PL geometric category is at most~3. It is easy to characterize/recognize $2$-polyhedra $P$ with $\hbox{plgcat}(P) = 1$. Borghini provided a partial characterization of $2$-polyhedra with $\hbox{plgcat}(P) = 2$. We complement his result by showing that it is NP-hard to decide whether $\hbox{plgcat}(P)\leq 2$. Therefore, we should not expect much more than a partial characterization, at least in algorithmic sense. Our reduction is based on the observation that 2-dimensional polyhedra $P$ admitting a shellable subdivision satisfy $\hbox{plgcat}(P) \leq 2$ and a (nontrivial) modification of the reduction of Goaoc, Pat\'{a}k, Pat\'{a}kov\'{a}, Tancer and Wagner showing that shellability of $2$-complexes is NP-hard.
翻译:多面体 $P$ 的PL几何范畴 $\hbox{plgcat}(P)$ 是Lusternik-Schnirelmann范畴的一个自然上界,并且定义为覆盖 $P$ 的最少可折叠PL子多面体数量。在2维中,PL几何范畴最多为3。很容易表征/识别 $\hbox{plgcat}(P)=1$ 的$2$-多面体 $P$ 。Borghini部分地表征了 $\hbox{plgcat}(P)=2$ 的 $2$-多面体 $P$ 。我们通过展示判断 $\hbox{plgcat}(P)\leq 2$ 是否成立是 NP-难的,补充了他的结果。因此,我们至少在算法意义上不应该期望更多的特征。我们的约简基于如下观察,即2维多面体 $P$ 有可壳性的细分则满足 $\hbox{plgcat}(P)\leq 2$ ,以及 Goaoc,Pat\'{a}k,Pat\'{a}kov\'{a},Tancer和Wagner的一个关于$2$-复合体壳化是NP-难的约简的(非平凡的)修改。