This paper investigates the efficiency of different cross-validation (CV) procedures under algorithmic stability with a specific focus on the K-fold. We derive a generic upper bound for the risk estimation error applicable to a wide class of CV schemes. This upper bound ensures the consistency of the leave-one-out and the leave-p-out CV but fails to control the error of the K-fold. We confirm this negative result with a lower bound on the K-fold error which does not converge to zero with the sample size. We thus propose a debiased version of the K-fold which is consistent for any uniformly stable learner. We apply our results to the problem of model selection and demonstrate empirically the usefulness of the promoted approach on real world datasets.
翻译:本文调查了算法稳定性下不同交叉校准程序的效率, 具体侧重于 K 值。 我们得出了适用于广泛类CV计划的风险估计错误的通用上限。 这个上限确保了放假和放假的CV的一致性, 但未能控制 K 值的错误。 我们确认这一负面结果, K 值误差的下限, K 值与样本大小不趋同为零。 因此, 我们提出了 K 值偏差的版本, 对任何统一稳定的学习者来说都是一致的。 我们将结果应用于模型选择问题, 并用经验证明推广的方法对真实世界数据集的有用性 。