In causal inference, the joint law of a set of counterfactual random variables is generally not identified. We show that a conservative version of the joint law - corresponding to the smallest treatment effect - is identified. Finding this law uses recent results from optimal transport theory. Under this conservative law we can bound causal effects and we may construct inferences for each individual's counterfactual dose-response curve. Intuitively, this is the flattest counterfactual curve for each subject that is consistent with the distribution of the observables. If the outcome is univariate then, under mild conditions, this curve is simply the quantile function of the counterfactual distribution that passes through the observed point. This curve corresponds to a nonparametric rank preserving structural model.
翻译:暂无翻译