We consider one-shot probabilistic decoders that map a vector-shaped prior to a distribution over sets or graphs. These functions can be integrated into variational autoencoders (VAE), generative adversarial networks (GAN) or normalizing flows, and have important applications in drug discovery. Set and graph generation is most commonly performed by generating points (and sometimes edge weights) i.i.d. from a normal distribution, and processing them along with the prior vector using Transformer layers or graph neural networks. This architecture is designed to generate exchangeable distributions (all permutations of a set are equally likely) but it is hard to train due to the stochasticity of i.i.d. generation. We propose a new definition of equivariance and show that exchangeability is in fact unnecessary in VAEs and GANs. We then introduce Top-n, a deterministic, non-exchangeable set creation mechanism which learns to select the most relevant points from a trainable reference set. Top-n can replace i.i.d. generation in any VAE or GAN -- it is easier to train and better captures complex dependencies in the data. Top-n outperforms i.i.d generation by 15% at SetMNIST reconstruction, generates sets that are 64% closer to the true distribution on a synthetic molecule-like dataset, and is able to generate more diverse molecules when trained on the classical QM9 dataset. With improved foundations in one-shot generation, our algorithm contributes to the design of more effective molecule generation methods.


翻译:我们认为,在分布于各组或图表的分布之前绘制矢量形状的直径概率解码器,可以将这些函数整合为可变自动读数器(VAE)、基因对抗网络(GAN)或正常流中,并具有重要的药物发现应用。设置和图形生成最常用的方法是从正常分布中生成点(有时是边缘重量)i.d。然后我们引入一个确定性、非互换性的创建机制,从可训练的参考集中选择最相关的点。Top-n可以取代任何可交换的分布(数据集的所有变换都同样可能),但是由于i.d. 生成的可变自变自变自变自动的直径解码(VAE 或GAN 生成的直径解调),因此很难进行训练。在生成更精确数据时,在更精确的生成数据中,通过更精确的生成数据序列中,最容易生成自变的直径生成数据。

0
下载
关闭预览

相关内容

【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
4+阅读 · 2020年10月18日
Using Scene Graph Context to Improve Image Generation
Arxiv
11+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2022年1月25日
Arxiv
4+阅读 · 2020年10月18日
Using Scene Graph Context to Improve Image Generation
Arxiv
11+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
9+阅读 · 2018年1月4日
Top
微信扫码咨询专知VIP会员