The replacement of analog meters with smart meters is costly, laborious, and far from complete in developing countries. The Energy Company of Parana (Copel) (Brazil) performs more than 4 million meter readings (almost entirely of non-smart devices) per month, and we estimate that 850 thousand of them are from dial meters. Therefore, an image-based automatic reading system can reduce human errors, create a proof of reading, and enable the customers to perform the reading themselves through a mobile application. We propose novel approaches for Automatic Dial Meter Reading (ADMR) and introduce a new dataset for ADMR in unconstrained scenarios, called UFPR-ADMR-v2. Our best-performing method combines YOLOv4 with a novel regression approach (AngReg), and explores several postprocessing techniques. Compared to previous works, it decreased the Mean Absolute Error (MAE) from 1,343 to 129 and achieved a meter recognition rate (MRR) of 98.90% -- with an error tolerance of 1 Kilowatt-hour (kWh).
翻译:在发展中国家,以智能仪表取代模拟仪表成本高、难度大而且远非完全。 帕拉纳(Copel)能源公司(巴西)每月进行400万多米读数(几乎完全是非智能设备),我们估计其中85万个来自拨号仪。 因此,基于图像的自动读数系统可以减少人为错误,建立读数证明,使客户能够通过移动应用程序进行读数。 我们提出了自动拨号读数(ADMR)的新办法,并在未受限制的情景中引入了ADMR的新数据集,称为UFPR-ADMR-v2。 我们的最佳方法将YOLOv4与新的回归法(AngReg)相结合,并探索了若干后处理技术。 与以往的工程相比,它将绝对误差从1,343降至129,并实现了98.90%的计量率(MRRR) -- 误差为1基洛塔时(kWh) 。