In this paper, a hybrid Lagrangian-Eulerian topology optimization (LETO) method is proposed to solve the elastic force equilibrium with the Material Point Method (MPM). LETO transfers density information from freely movable Lagrangian carrier particles to a fixed set of Eulerian quadrature points. The transfer is based on a smooth radial kernel involved in the compliance objective to avoid the artificial checkerboard pattern. The quadrature points act as MPM particles embedded in a lower-resolution grid and enable a sub-cell multi-density resolution of intricate structures with a reduced computational cost. A quadrature-level connectivity graph-based method is adopted to avoid the artificial QR patterns commonly existing in multi-resolution topology optimization methods. Numerical experiments are provided to demonstrate the efficacy of the proposed approach.
翻译:本文建议采用拉格朗吉亚-尤利安地形优化混合法(LETO),用材料点法(MPM)解决弹性力平衡问题。LEATO将可自由移动的拉格朗吉亚载体粒子的密度信息从自由移动的拉格朗吉亚载体粒子转移到一套固定的欧莱安二次方位点。这种转移是基于遵守目标所涉及的光滑的射线内核内核,以避免人工检查板模式。四极点的作用是嵌入低分辨率网格的MPM颗粒,并能够使复杂结构的分细胞多密度解,并降低计算成本。采用了以等离子级连接图为基础的方法,以避免多分辨率表层优化方法中常见的人工QR模式。提供了数值实验,以证明拟议方法的有效性。