We describe the asymptotic behavior of the conditional least squares estimator of the offspring mean for subcritical strongly stationary Galton--Watson processes with regularly varying immigration with tail index $\alpha \in (1,2)$. The limit law is the ratio of two dependent stable random variables with indices $\alpha/2$ and $2\alpha/3$, respectively, and it has a continuously differentiable density function. We use point process technique in the proofs.
翻译:我们描述下子临界强固态加尔顿-瓦特森进程(其移民经常变化,尾指数为1,2美元)的后代的有条件最小方位估计员的轻微行为。 限制法是两个依赖性稳定随机变量的比率,分别是1,2美元和2,3美元,并且具有可持续差异的密度功能。 我们在证据中使用点处理技术。