Consider a multivariate L\'evy-driven Ornstein-Uhlenbeck process where the stationary distribution or background driving L\'evy process is from a parametric family. We derive a likelihood function allowing for parameter estimation of such a process using Fourier inversion assuming that the innovation term is absolutely continuous. We further give a method for simulating the observations based on an approximation of the innovation term and prove its convergence. Two examples are studied in detail: the process where the stationary distribution or background driving L\'evy process is given by a weak variance alpha-gamma process, which is a multivariate generalisation of the variance gamma process created using weak subordination. In the former case, we give an explicit representation of the background driving L\'evy process, leading to an innovation term with a mixed-type distribution, and a separate likelihood function. In the latter case, we show the innovation term is absolutely continuous. The results of a simulation study demonstrate that our likelihood method can be applied to accurately estimate the parameters in both cases.


翻译:考虑一个多变量 L\'evy- ornstein- Uhlenbeck 进程, 固定分布或背景驱动 L\' evy 进程来自一个参数组。 我们得出一个可能性函数, 允许使用 Fourier 的参数来估计这一过程, 假设创新术语是绝对连续的。 我们进一步给出一种方法, 模拟基于创新术语近似值的观测结果, 并证明其趋同。 详细研究了两个例子 : 固定分布或背景驱动 L\ evy 进程是由一个微弱的变异α- 伽马 进程给出的, 这一过程是使用弱的从属关系生成的变异伽马 进程。 在前一种情况下, 我们给出了对背景驱动 L\' evy 进程的背景的清晰描述, 导致一种混合型分布的创新术语, 以及一个单独的概率函数。 在后一种情况下, 我们展示创新术语是绝对连续的。 模拟研究的结果表明, 我们可能采用的方法来准确估计两种情况下的参数。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员