Probabilistic graphical models, such as Markov random fields (MRFs), are useful for describing high-dimensional distributions in terms of local dependence structures. The probabilistic inference is a fundamental problem related to graphical models, and sampling is a main approach for the problem. In this paper, we study probabilistic inference problems when the graphical model itself is changing dynamically with time. Such dynamic inference problems arise naturally in today's application, e.g.~multivariate time-series data analysis and practical learning procedures. We give a dynamic algorithm for sampling-based probabilistic inferences in MRFs, where each dynamic update can change the underlying graph and all parameters of the MRF simultaneously, as long as the total amount of changes is bounded. More precisely, suppose that the MRF has $n$ variables and polylogarithmic-bounded maximum degree, and $N(n)$ independent samples are sufficient for the inference for a polynomial function $N(\cdot)$. Our algorithm dynamically maintains an answer to the inference problem using $\widetilde{O}(n N(n))$ space cost, and $\widetilde{O}(N(n) + n)$ incremental time cost upon each update to the MRF, as long as the well-known Dobrushin-Shlosman condition is satisfied by the MRFs. Compared to the static case, which requires $\Omega(n N(n))$ time cost for redrawing all $N(n)$ samples whenever the MRF changes, our dynamic algorithm gives a $\widetilde\Omega(\min\{n, N(n)\})$-factor speedup. Our approach relies on a novel dynamic sampling technique, which transforms local Markov chains (a.k.a. single-site dynamics) to dynamic sampling algorithms, and an "algorithmic Lipschitz" condition that we establish for sampling from graphical models, namely, when the MRF changes by a small difference, samples can be modified to reflect the new distribution, with cost proportional to the difference on MRF.


翻译:概率图形模型, 如 Markov 随机字段( MRF), 可用于描述本地依赖结构的高维分布。 概率推断是图形模型的一个基本问题, 取样是问题的主要方法 。 在本文中, 当图形模型本身随着时间动态变化时, 我们研究概率推断问题。 这种动态推断问题自然出现在今天的应用中, 例如: ~ 多变量时间序列数据分析和实用学习程序 。 我们给出一个动态算法, 用来描述基于取样的本地依赖结构的概率分布。 在MRF中, 每次动态更新可以同时改变MRF的基本图表和所有参数, 只要总变化被捆绑住。 更准确地说, 假设 MRF 具有美元变量和多数值限制的最大度, 而 $( n) 独立样本足以( ) 以新的数字序列函数 $(\ cottot) 来推断 。 我们的算法根据NVRF 的汇率变化, 以美元( 美元( 美元) 数字( ) 和 美元( 美元) 数字( ) 数字( ) 数字( ) 数字( ) ) 数字( RFM) 计算算算算算算算算算算) 成本, 来, 将最小) 将最小) 以最小( RFRF 时间( RF 成本算算算算算算算算算算算) 。

0
下载
关闭预览

相关内容

马尔可夫随机场(Markov Random Field),也有人翻译为马尔科夫随机场,马尔可夫随机场是建立在马尔可夫模型和贝叶斯理论基础之上的,它包含两层意思:一是什么是马尔可夫,二是什么是随机场。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
BAT机器学习面试题1000题(316~320题)
七月在线实验室
14+阅读 · 2018年1月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
BAT机器学习面试题1000题(316~320题)
七月在线实验室
14+阅读 · 2018年1月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
相关论文
Arxiv
0+阅读 · 2021年1月18日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2015年5月16日
Top
微信扫码咨询专知VIP会员