In this paper, we propose a doubly stochastic spatial point process model with both aggregation and repulsion. This model combines the ideas behind Strauss processes and log Gaussian Cox processes. The likelihood for this model is not expressible in closed form but it is easy to simulate realisations under the model. We therefore explain how to use approximate Bayesian computation (ABC) to carry out statistical inference for this model. We suggest a method for model validation based on posterior predictions and global envelopes. We illustrate the ABC procedure and model validation approach using both simulated point patterns and a real data example.
翻译:在本文中,我们提出了一个双重的随机空间点过程模型,其中既包括集成,也包括反向。这个模型结合了斯特劳斯进程和日志Gaussian Cox进程背后的想法。这个模型的可能性无法以封闭的形式表达,但很容易在模型下模拟实现情况。因此,我们解释如何使用近似贝叶斯计算法(ABC)来为这个模型进行统计推理。我们建议了一种基于后方预测和全球信封的模型验证方法。我们用模拟点模式和真实数据示例来说明ABC程序和模型验证方法。