Previous work on planning as active inference addresses finite horizon problems and solutions valid for online planning. We propose solving the general Stochastic Shortest-Path Markov Decision Process (SSP MDP) as probabilistic inference. Furthermore, we discuss online and offline methods for planning under uncertainty. In an SSP MDP, the horizon is indefinite and unknown a priori. SSP MDPs generalize finite and infinite horizon MDPs and are widely used in the artificial intelligence community. Additionally, we highlight some of the differences between solving an MDP using dynamic programming approaches widely used in the artificial intelligence community and approaches used in the active inference community.
翻译:作为积极推论,先前的规划工作涉及有限地平线问题和对在线规划有效的解决办法。我们提议作为概率推论解决一般的Stochatic Shortest-Path Markov 决策程序(SSP MDP ) 。此外,我们讨论了在不确定情况下进行规划的在线和离线方法。在SSP MDP 中,这一地平线是无限期的,而且事先是未知的。SSP MDP 概括了有限和无限地平线 MDP,并被人造情报界广泛使用。此外,我们强调在使用人工情报界广泛使用的动态编程方法与积极推论界使用的方法之间,在解决一个多维的 MDP 之间有一些不同之处。