In this work, we are concerned with the Fokker-Planck equations associated with the Nonlinear Noisy Leaky Integrate-and-Fire model for neuron networks. Due to the jump mechanism at the microscopic level, such Fokker-Planck equations are endowed with an unconventional structure: transporting the boundary flux to a specific interior point. While the equations exhibit diversified solutions from various numerical observations, the properties of solutions are not yet completely understood, and by far there has been no rigorous numerical analysis work concerning such models. We propose a conservative and conditionally positivity preserving scheme for these Fokker-Planck equations, and we show that in the linear case, the semi-discrete scheme satisfies the discrete relative entropy estimate, which essentially matches the only known long time asymptotic solution property. We also provide extensive numerical tests to verify the scheme properties, and carry out several sets of numerical experiments, including finite-time blowup, convergence to equilibrium and capturing time-period solutions of the variant models.
翻译:在这项工作中,我们关注与神经网络的非线性Noisy Leaky综合和Fire模型相关的Fokker-Planck方程式。由于微显层的跳机制,这种Fokker-Planck方程式具有非常规结构:将边界通量传送到一个特定的内点。虽然这些方程式从各种数字观察中显示出了多种多样的解决办法,但各种解决办法的特性还没有得到完全理解,而且迄今为止还没有对这些模型进行严格的数字分析。我们为这些Fokker-Planck方程式提出了一个保守的和有条件的假设性保护方案,我们表明在线性情况下,半分解式方案满足了离散的相对entropy估计,这基本上符合已知的只有很长一段时间的静态解决方案属性。我们还提供广泛的数字测试,以核实方案特性,并开展若干项数字实验,包括有限时间的吹动、趋同平衡和捕捉取变式模型的时段解决办法。