In this paper, we first derive Milstein schemes for an interacting particle system associated with point delay McKean-Vlasov stochastic differential equations (McKean-Vlasov SDEs), possibly with a drift term exhibiting super-linear growth in the state component. We prove strong convergence of order one and moment stability, making use of techniques from variational calculus on the space of probability measures with finite second order moments. Then, we introduce an antithetic multi-level Milstein scheme, which leads to optimal complexity estimators for expected functionals of solutions to delay McKean-Vlasov equations without the need to simulate L\'evy areas.
翻译:在本文中,我们首先得出与点延缓McKan-Vlasov Stochacistic 差分方程式(McKean-Vlasov SDEs)相关的互动粒子系统的米尔斯坦计划, 可能是一个在州部分中表现出超线性增长的漂移术语。 我们证明, 顺序一和瞬间稳定性高度趋同, 利用在有限第二顺序时间的概率测量空间上的变式微积分技术。 然后, 我们引入了一种抗异多级米尔斯坦计划, 导致最佳复杂度估计器, 用于预期的解决方案功能, 以延迟麦肯- Vlasov 方程式, 而无需模拟 L\' evy 区域 。