This paper studies a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system, in which a multi-antenna base station (BS) sends unified wireless signals to estimate an extended target and communicate with a multi-antenna communication user (CU) at the same time. We investigate the fundamental tradeoff between the estimation Cram\'er-Rao bound (CRB) for sensing and the data rate for communication, by characterizing the Pareto boundary of the achievable CRB-rate (C-R) region. Towards this end, we formulate a new MIMO rate maximization problem by optimizing the transmit covariance matrix at the BS, subject to a new form of maximum CRB constraint together with a maximum transmit power constraint. We derive the optimal transmit covariance solution in a semi-closed form, by first implementing the singular-value decomposition (SVD) to diagonalize the communication channel and then properly allocating the transmit power over these subchannels for communication and other orthogonal subchannels (if any) for dedicated sensing. It is shown that the optimal transmit covariance is of full rank, which unifies the conventional rate maximization design with water-filling power allocation and the CRB minimization design with isotropic transmission. Numerical results are provided to validate the performance achieved by our proposed optimal design, in comparison with other benchmark schemes.
翻译:本文研究多投入多输出(MIMO)综合遥感和通信(ISAC)系统,在该系统中,多ANETNA基站(BS)发出统一的无线信号,以估计扩大的目标,同时与多ANTANNA通信用户(CU)进行通信联系。我们通过说明可实现的CRB-率(C-R)区域的Pareto边界(Pareto边界),调查用于遥感的Cram\'er-Rao-Rao绑定(CRB)和数据通信率之间的基本权衡。为此,我们制定了一个新的MIMO利率最大化问题,优化了在BS的传输差变率矩阵,以估计扩展目标,同时同时与多源通信用户(CUC)通信用户(CUB)进行通信联系。我们以半封闭的形式提出最佳传输变异性解决方案,先是实施单值解变异化通信频道,然后适当分配这些子频道的传输能力,然后将其他或多位子网(如果有的话)用于专用的感测。我们发现,最佳的CRBDRB限制的传输率是最佳设计、最佳设计结果的升级。