In the maximum coverage problem, we are given subsets $T_1, \ldots, T_m$ of a universe $[n]$ along with an integer $k$ and the objective is to find a subset $S \subseteq [m]$ of size $k$ that maximizes $C(S) := \Big|\bigcup_{i \in S} T_i\Big|$. It is a classic result that the greedy algorithm for this problem achieves an optimal approximation ratio of $1-e^{-1}$. In this work we consider a generalization of this problem wherein an element $a$ can contribute by an amount that depends on the number of times it is covered. Given a concave, nondecreasing function $\varphi$, we define $C^{\varphi}(S) := \sum_{a \in [n]}w_a\varphi(|S|_a)$, where $|S|_a = |\{i \in S : a \in T_i\}|$. The standard maximum coverage problem corresponds to taking $\varphi(j) = \min\{j,1\}$. For any such $\varphi$, we provide an efficient algorithm that achieves an approximation ratio equal to the Poisson concavity ratio of $\varphi$, defined by $\alpha_{\varphi} := \min_{x \in \mathbb{N}^*} \frac{\mathbb{E}[\varphi(\text{Poi}(x))]}{\varphi(\mathbb{E}[\text{Poi}(x)])}$. Complementing this approximation guarantee, we establish a matching NP-hardness result when $\varphi$ grows in a sublinear way. As special cases, we improve the result of [Barman et al., IPCO, 2020] about maximum multi-coverage, that was based on the unique games conjecture, and we recover the result of [Dudycz et al., IJCAI, 2020] on multi-winner approval-based voting for geometrically dominant rules. Our result goes beyond these special cases and we illustrate it with applications to distributed resource allocation problems, welfare maximization problems and approval-based voting for general rules.
翻译:在最大覆盖范围问题中,我们被给出子集 $T_1,\\ lidots, t_m$m$ 宇宙 $n 和整数美元, 目标是找到一个子集 $S\ subseteq [m] 美元大小, 使美元最大化 C(S) : =\ bigcup ⁇ i i\ in S} T_ i\ big_ broom $。 一个典型的结果是, 这一问题的贪婪算法 达到了1美元- eval_ 美元的最佳近似比值。 在这个工作中, 一个元素 美元可以贡献多少, 取决于它覆盖多少次 。 鉴于一个convey, 没有下降的函数 $ 美元, 我们定义了 $\ varphi} 的结果: === excial_ max max max max max max max max max max max mail max a res remail res remail res res res res resmax res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res a res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res res