In this paper, we propose a Bayesian channel estimator for intelligent reflecting surface-aided (IRS-aided) millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems with semi-passive elements that can receive the signal in the active sensing mode. Ultimately, our goal is to minimize the channel estimation error using the received signal at the base station and additional information acquired from a small number of active sensors at the IRS. Unlike recent works on channel estimation with semi-passive elements that require both uplink and downlink training signals to estimate the UE-IRS and IRS-BS links, we only use uplink training signals to estimate all the links. To compute the minimum mean squared error (MMSE) estimates of all the links, we propose a novel variational inference-sparse Bayesian learning (VI-SBL) channel estimator that performs approximate posterior inference on the channel using VI with the mean-field approximation under the SBL framework. The simulation results show that VI-SBL outperforms the state-of-the-art baselines for IRS with passive reflecting elements in terms of the channel estimation accuracy, training overhead, and spectral efficiency. Furthermore, VI-SBL with semi-passive elements is shown to be more energy-efficient than the baselines with passive reflecting elements while employing a small number of low-cost active sensors.
翻译:在本文中,我们提出一个巴伊西亚频道估计器,用于智能反射表面辅助(IRS辅助)毫米辐射波(mmWave)大规模多输入多输出输出(MIMO)系统,具有半被动元素,可在主动感测模式中接收信号。最终,我们的目标是利用基地站收到的信号和从国际遥感系统少数活跃传感器获得的额外信息,尽量减少频道估计错误。与最近用半被动元素进行频道估计的工作不同,这些半被动元素需要上链和下链培训信号来估计UE-IRS和IRS-BS链接,我们只使用上链路培训信号来估计所有链接。为了计算所有链接的最低平均正方位错误(MMSE)估计数,我们提出了一个新的变异性偏差-偏差海湾学习(VI-SBL)频道估计器,在SBL框架下使用平均近距离近六点对频道进行近似后推推断。模拟结果表明,VI-SBL的低频级和低频级SB基线要素比VI级标准中反映的频率基准要素。