Accurate rotation estimation is at the heart of robot perception tasks such as visual odometry and object pose estimation. Deep neural networks have provided a new way to perform these tasks, and the choice of rotation representation is an important part of network design. In this work, we present a novel symmetric matrix representation of the 3D rotation group, SO(3), with two important properties that make it particularly suitable for learned models: (1) it satisfies a smoothness property that improves convergence and generalization when regressing large rotation targets, and (2) it encodes a symmetric Bingham belief over the space of unit quaternions, permitting the training of uncertainty-aware models. We empirically validate the benefits of our formulation by training deep neural rotation regressors on two data modalities. First, we use synthetic point-cloud data to show that our representation leads to superior predictive accuracy over existing representations for arbitrary rotation targets. Second, we use image data collected onboard ground and aerial vehicles to demonstrate that our representation is amenable to an effective out-of-distribution (OOD) rejection technique that significantly improves the robustness of rotation estimates to unseen environmental effects and corrupted input images, without requiring the use of an explicit likelihood loss, stochastic sampling, or an auxiliary classifier. This capability is key for safety-critical applications where detecting novel inputs can prevent catastrophic failure of learned models.
翻译:精确的旋转估计是机器人感知任务的核心,例如视觉眼眼计量和物体构成估计。深神经网络为完成这些任务提供了一种新的方法,选择旋转代表是网络设计的一个重要部分。在这项工作中,我们展示了3D旋转组(SO(3))的新型对称矩阵代表,有两个重要属性,使得它特别适合学习模型:(1) 它满足了平稳的属性,在回归大型旋转目标时,它提高了趋同性和概括性;(2) 它编码了对单位四分空空间的对称贝哈姆信念,允许培训有不确定性的模型。我们通过在两种数据模式上培训深神经旋转反射器,对我们的配方的好处进行了实验性验证。首先,我们使用合成点球格数据,表明我们的代表比现有任意旋转目标的表示更能提高预测性准确性。 其次,我们使用在地面和航空飞行器上收集的图像数据,以表明我们的代表性是有效的外向外分配(ODD)拒绝技术,可以大大地防止灾难性的轮转评估的稳健性,而需要精确的精确的测测算结果的精确性图像应用。